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Abstract. In this report, we describe our method for the Surgical Tool
Detection Challenge. Our method is mainly based on the ensembling
two most used deep neural network architecture for classification task –
GoogleNet and VGGNet. We have customized the parameters in both
models to achieve better accuracy. On our training and validation data
sets, both the methods get more than 0.75 hamming scores. On the test
set evaluated by M2CAI challenge, our model achieves 63.7% mean av-
erage precision, leading to one of the top three methods in the challenge.

1 Introduction

Convolutional Neural Networks (CNNs) are the current trend in machine learn-
ing and computer vision tasks. One of the tough problems in general machine
learning and computer vision is feature extraction. Traditional feature extrac-
tion requires expert knowledge about the data and the methodology differs in
each task. We can automatically extract more complicated and useful features
by training CNNs. Beside, with the advances in high speeding computing, CNNs
become the-state-of-art methods for machine learning and computer vision ar-
eas.
In our method, we have taken the advantage of CNNs to solve this problem. Our
model uses ensemble of two different deep CNN models (GoogleNet [10] and VG-
GNet [9]). VGGNet won the ImageNet competition in 2014 and GoogleNet was
the champion for the ImageNet competition in 2015. Both of the two models
are widely used for image classification tasks. In our method, we train both the
networks and ensemble the results of the two networks.

2 Data description

2.1 Data source and data sets description

All the data we used in our training, validation and testing stages are from the
data given by this challenge. We didn’t use any extra data. We increased the
dataset size by data augmentation in the training process.

For the training data, since the raw data are videos with frames annotated
at 1 fps. We extract frames from the video and took only the frames that are



2

[1, 1, 0, 0, 0, 0, 0] [1, 0, 0, 0, 1, 0, 0] [1, 0, 1, 0, 0, 0, 0] [1, 0, 0, 0, 0, 0, 1]
Fig 1. Different images and their corresponding vector labels. The first image from left
has the label [1, 1, 0, 0, 0, 0, 0], which is of the form [grasper, bipolar, hook, scissors,
clipper, irrigator and specimen bag]. Thus,for the first image, both grasper and bipolar
are present.

given in the annotation file. For each model, we use 5-fold cross validation with
random shuffle and splitting the data with 90% as training data and 10% as
validation data. We use about 21000 original training images.
For the testing data, we extracted the videos into frames similar to training data.
Fig 1 shows different images and their corresponding labels extracted from the
annotation file in such order: grasper, bipolar, hook, scissors, clipper, irrigator
and specimen bag.

2.2 Data preprocessing and augmentation

All the images are resized to 224× 224× 3 so the images can be directly used in
the GoogleNet and VggNet. The images are later normalized by dividing each
pixel by 255 so that the range of pixels will be between [0,1) rather than [0-255).
The size of the dataset is increased by performing real time image augmenta-
tions randomly in each epoch of the whole training process. We find that real
time augmentation produced better result than off-line augmentation. The image
augmentation methods include image rotation, horizontal flipping and vertical
flipping. Any of the three augmentation is taken at the probability of 0.5.

3 Methodology

We consider this challenge a multi-label classification problems [3]. Thus, we use
two most used image classification deep neural network models: GoogleNet and
VGGNet. In this section, We explain the detail of the two models, loss function,
our evaluation metric and optimization method used for network training.

3.1 Two Models

VGGNet VGGNet has 16 layers with convolution and max pooling layers. The
architecture uses the same 3 × 3 kernel size for convolution and pooling in all
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layers. We initialize the network weights with [4]. For the activation function
ReLU [7] is used in our VGGNet training. We also use Batch Normalization in
this architecture. The model is trained with 5-fold Cross validation with 90% of
the data as training and 10% as testing data. Some of the hyper-parameters and
settings are listed in Table 1.

Hyper-parameters or Settings VGGNet

Loss function Sigmoid Cross Entropy with Logits [1]

Optimization Method Adam [6]

Activation Functions ReLU [7]

Use Batch Normalization [5] Yes

Weights initialization HE-Normal [4]

Initial Learning Rate 0.0001

Momentum 0.9

Batch Size 32

Epochs 1000

Table 1: Hyper parameters or settings used in VGGNet

GoogleNet GoogleNet has 22 layers and in each layer it has an inception
block. We have used batch normalization after each convolution operation. For
the activation function, we use Leak ReLU [11]. The batch size used in GooglNet
is 64 while in VGGNet it is 32. The main reason for this difference in size is that
GoogleNet has 3 times less weights parameters than VGGNet. We initialize the
weights from model trained in ImageNet competition. The pre-trained weights
are initialized from Model Zoo Caffe. The model is trained with 5-fold Cross
validation with 90% of the data as training and 10% as testing data. Some of
the hyper-parameters and settings are listed in Table 2.

3.2 Ensembling

We have 10 trained models for both VGGNet and GoogleNet since we use 5-fold
cross validation for each of them. In ensembling process, we ensemble the 10 mod-
els together to get the final results. We tried 3 methods to ensemble the results
that we got from test data. The three methods are normal averaging, weighted
average and geometric average. We find that normal averaging produced much
satisfying results on the validation set so we choose normal averaging in our
method.
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Hyper-parameters and Settings GoogleNet

Loss function Sigmoid Cross Entropy with Logits [1]

Optimization Method Adam [6]

Activation Functions Leaky ReLU [11]

Use Batch Normalization [5] Yes

Weights initialization Pre-trained model

Initial Learning Rate 0.0001

Momentum 0.9

Batch Size 64

Epochs 1000

Table 2: Hyper parameters or settings used in GoogleNet

4 Results on the Validation Set

All our implementation are build on TensorFlow [2]. For our own evaluation,
we use hamming score [8] as accuracy evaluation metric on our validation set
to evaluate the performance of the trained models. Before ensembling, we get
around 78% validation accuracy using GoogleNet and 75% validation accuracy
using VGGNet.

5 Conclusion

With the ensemble of the two models we are able to get mean average precision
of 63.7% on the test data evaluated by M2CAI challenge, placing us among the
top-3 positions on the leader board.
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