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Abstract. With the increasing volume of surgeries and the advance-
ment in medicine and technology, having a context-aware system (CAS)
is becoming a necessity in the operating room (OR). By understanding
the surrounding physical environment, a CAS will allow the possibility to
improve OR scheduling, to design context-sensitive user interfaces, and
to develop the automatic transcription of medical procedures. In this
paper, we address one of the essential components of a CAS, namely the
ability to recognize surgical phases during a surgical procedure. Here, we
focus on performing this recognition task on vertebroplasty procedures
recorded by a ceiling-mounted multi-view RGBD camera system. Instead
of using hand-crafted visual features, we propose to learn multi-modal vi-
sual features using deep learning techniques. We design a neural network
architecture which takes RGB, depth, and motion images as input and
computes a visual feature representation shared among the modalities.
Using this network, visual features are then extracted and passed to a
recognition pipeline, which consists of SVM and HHMM. This pipeline is
used to enforce the temporal constraints from surgical workflow into the
recognition process. To investigate the performance and generalizabil-
ity of the network, we perform the task on two new multi-view RGBD
datasets, capturing in total 37 surgeries performed in two different hy-
brid ORs. Through an extensive comparison with other visual features,
we show that the features extracted from the proposed network yield
state-of-the art results for this recognition task.

Keywords: Context-aware system, phase recognition, multi-view RGBD
system, deep architecture, and neural network.

1 Introduction

In recent years, with the increasing volume of surgeries and the advancement in
technology, the operating room (OR) has become a dense working environment.
Equipped with advanced surgical equipments, the OR is overflown with informa-
tion coming from these devices, which can impede the effectiveness and efficiency
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in the execution of surgical procedures. Therefore, there is a growing interest in
the community to construct a context-aware system (CAS) for the OR in order
to be able to exploit the information to the clinicians’ and surgeons’ advantages
[1]. A key component of a CAS is the capability to know at any time what is hap-
pening in the OR, especially during a surgery. This task, referred to as surgical
phase recognition, consists of determining the surgical phase occurring in the OR
at any given time during a surgery. The ability to recognize the surgical phases
in the OR opens up the possibilities for various applications. For example, by
knowing what phase is occurring in the OR, the appropriate information can be
displayed to the surgeons and the clinical staff, which improves the efficiency of
coordination and communication in the OR. Furthermore, through further anal-
ysis of the phases, surgical error and probable upcoming complications could
potentially be avoided.

In this paper, we study the task of surgical phase recognition on RGBD
videos which capture the scene in the OR. Specifically, we address the task of
recognizing 8 surgical phases (see Section 3.1) in vertebroplasty procedures. The
procedure consists of injecting a special cement into a fractured vertebra, with
the goal of relieving spinal pain and restoring mobility. The RGBD videos are
recorded using a ceiling-mounted multi-view RGBD system, which consists of
two cameras. A multi-view system is used in order to cover a larger area inside the
OR, while the RGBD sensors are chosen because they provide complementary
color and depth information about the scene.

In the literature, multiple studies have proposed vision-based methods to
perform the activity recognition task in medical settings. For example, one of the
earliest work [2] proposed to identify four OR occupancy states using the videos
recorded by a ceiling mounted camera. Another work [3] presented a pipeline to
perform the automatic transcription of trauma resuscitations in the emergency
department, using a camera mounted on top of the patient’s bed. In [4], a method
for activity recognition in an intensive care unit (ICU) using an RGBD sensor
was presented. However, all the afore-mentioned studies address the task using
handcrafted visual features. These features are engineered to capture certain
characteristics from the data, which may lead to information loss. In this work,
we are interested in performing the task using feature learning techniques in
the context of multi-view multi-modal data, particularly using deep learning
algorithms.

In the computer vision community, deep learning methods, such as convolu-
tional neural networks (CNNs), have been shown to successfully perform various
tasks, such as image classification [5], object detection [6], and activity recogni-
tion [7]. The methods have also been shown to successfully perform several tasks
on multi-modal data. For example, in [8], the combination of RGB and depth
features extracted using deep networks are shown to perform better than the
individual feature for an object recognition task. Another work [9] proposed to
combine RGB and motion information as input for the CNN and demonstrated
better performance for activity recognition compared to other networks with sin-
gle modality. Inspired by these methods, here, we investigate the usage of deep



learning techniques for feature learning on multi-modal multi-view data, by de-
signing a multi-stream CNN architecture which takes color, depth and motion
images as input.

Training a CNN is however not trivial since it typically contains millions of
unknowns. For example, the AlexNet network [5] contains over 60M unknowns.
This leads to the need for a large amount of data during the training process.
This problem can however be alleviated thanks to transfer learning approaches,
such as fine-tuning. To train the network, the fine-tuning process initializes the
optimization with a successfully pre-trained network, instead of a random ini-
tialization. This significantly helps the optimization process and leads to faster
convergence, as demonstrated for instance in [6] for an object detection task.
In a recent work [10], it has also been shown that fine-tuning can be used to
successfully train a CNN model for surgical phase recognition on laparoscopic
videos.

Here, we are performing a study similar to [10], using a different type of
data. We propose a training strategy for the multi-stream network in order to
improve the performance of the network. Once the network is learnt, it will be
used to extract the visual features from the images. These features are passed to
a recognition pipeline, which consists of a support vector machine (SVM) and a
hierarchical hidden Markov model (HHMM). The objective of this pipeline is to
enforce the temporal constraints of the surgical workflow.

To validate our approach, we train and evaluate the network using a multi-
view multi-modal dataset recorded in a hybrid OR, containing 24 surgeries.
Ultimately, to show the generalizability of the network, we also perform the
recognition task on another dataset of 13 surgeries, which is recorded in a dif-
ferent OR, without retraining the network.

The main contributions of our work are as follows: (1) we propose a CNN ar-
chitecture to address phase recognition on multi-view RGBD videos and present
a strategy to fine-tune the network on multi-modal data, and (2) we perform an
extensive experiment to show a wide range of comparisons between the proposed
network and other methods.

2 Methodology

2.1 Architecture

The proposed architecture is inspired by AlexNet [5] (shown in Fig. 1), which
consists of an input layer, five convolution layers, and three fully-connected lay-
ers. The input layer takes RGB images and the output is 1000 values representing
the confidence of the images belonging to the corresponding 1000 classes.

In this work, we are not only working with RGB images, but also depth im-
ages. Therefore, here we design a network which is optimized to perform surgical
phase recognition using both RGB and depth images at the same time. In [9], it
has been shown that the activity recognition results are improved when motion
images are incorporated into the neural network as input. In addition, a study



AlexNet architecture
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Fig. 1. AlexNet architecture [5].
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Fig. 2. Our proposed multi-stream CNN architecture.

[11] addressing a similar task to the one presented in this paper has shown that
the location of the movements in the scene is one of the discriminative features.
Therefore, we also incorporate motion images as input for the network. Here,
motion images are obtained from both RGB and depth videos by subtracting
the image at time t with image at time t− 1.

Taking the afore-mentioned points into consideration, we design a CNN ar-
chitecture which is shown in Fig. 2. The network takes four streams of input,
i.e., RGB, depth, and their corresponding motion images. These networks are
connected to a concatenation layer after the first fully-connected layer (i.e., fc6).
We do not perform the concatenation after layer fc7 because we want to build a
shared feature representation between the image modalities before going to the
last layer (i.e., fc phase) without adding another fully-connected layer. There-
fore, in our proposed network, each image still undergoes the same process as in
AlexNet: five convolution and three fully-connected layers. To handle the multi-
view images, this network is trained using images from both views. Once trained,
the network is then used to extract the visual features from images from both
views.



2.2 Training Strategy

As shown in Fig. 2, it can be seen that the multi-stream network is extremely
large, containing 20 convolution layers and six fully-connected layers. Fine-tuning
the network in one run might not lead to result improvement since it is difficult
to perform the optimization for a large number of variables. In addition, the
pre-trained AlexNet model is optimized using RGB images, thus the network
weights are not optimized for other image modalities. To alleviate this problem,
we propose a two-step optimization.

First, using a pre-trained AlexNet network, we finetune each network stream
separately. We finetune a network solely using the RGB images and repeat the
same process for depth, RGB motion, and depth motion images. Second, using
the four networks obtained from the first step, we finetune the proposed network.
This way, the optimization is initialized with a semi-optimal solution, consisting
of four networks independently optimized for the surgical phase recognition task.
Therefore, the main objective of this second step is to obtain the optimal weights
for layers rgbdmotionfc7 and fc phase.

2.3 Phase Recognition Pipeline

We adopt the phase recognition pipeline presented in [10] which consists of a
multi-class support vector machine (SVM) and a hierarchical hidden markov
model (HHMM). The SVM is designed to take the feature representations of the
video frames to compute the confidence values indicating the frames belonging
to the phases. Here, the feature representation is taken from the second last layer
of the network, i.e., the output of layer rgbdmotionfc7. Since we are working
with a multi-view system, the feature representation of a frame is obtained by
concatenating the features extracted from both views.

One can observe that the confidence values computed by SVM are similar
to the ones given by the network, i.e., the output of layer fc phase. Thus, in
practice, it is not essential to pass the visual features to the SVM to perform
the recognition task. However, the SVM step is necessary in order to facilitate
fair comparisons with other visual features. In [10], it is mentioned that there is
only a slight difference of performance between the confidence values computed
by the SVM and the ones given by the network.

Even though the confidence values obtained from the SVM can already be
used to determine the surgical phases, they are obtained frame-wise without
taking into account the temporal constraints imposed by the surgical workflow.
To enforce these constraints, here, we use use a two-level Hierarchical HMM. The
top-level contains states that model the surgical phases and their transitions,
while the bottom-level nodes model the intra-phase dependencies. The temporal
model is learnt from the ground truth annotations as presented in [12]. The
observations are given by the confidences from the SVM.
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Fig. 3. Frame samples from: (a) VerCArm24 and (b) VerCT13 datasets.

3 Experimental Setup

3.1 Datasets

To perform the task, we prepare two datasets, referred to as VerCArm24 and
VerCT13, recorded in two different hybrid ORs. In Fig. 3, we show the views
captured by the multi-view system in both ORs. The cameras are configured to
observe the OR bed and the equipment table in both ORs. This way, all major
activities occurring during surgery are captured by the recording system. The
VerCArm24 dataset contains 24 recordings of vertebroplasty procedures, while
the VerCT13 dataset contains 13 recordings. All recordings are annotated with 8
surgical phases defined by a senior clinician. The list and statistics of the phases
are shown in Fig. 4-a and the phase transitions are illustrated in Fig. 4-b.

From the VerCArm24 dataset, we take 10 videos to perform the finetuning
process. The rest (i.e., 14 videos) is used for evaluation. The VerCT13 dataset is
used to test the generalizability of the network, thus all videos in the VerCT13
dataset are used for evaluation. In summary we have three subsets: (1) Ver-
CArm24 finetuning, (2) VerCArm24 evaluation, and (3) VerCT13 evaluation.
On both evaluation subsets, the method is evaluated using leave-one-out cross
validation. For example, using the VerCArm24 evaluation subset, 13 videos are
used to train the SVM-HHMM pipeline and 1 video is used for testing. Results
are averaged over all possible video combinations. Due to redundancy and in
order to reduce the computational cost, we perform all processes at 1 fps.

3.2 Evaluation

To perform the evaluation of the method, we use three evaluation metrics which
have already been used for the same task [10], i.e., precision, recall, and accu-
racy. Precision and recall show the quality of the recognition results for each
phase. In contrast, accuracy represents the percentage of correct detections in
the complete surgery. We use three evaluation metrics in order to obtain more
comprehensive results since short phases will not be well represented in accuracy
since it is computed over the complete video. Due to the stochastic properties
of the SVM-HHMM pipeline, we perform the evaluation in 8 experimental runs.
The displayed results are obtained by averaging the results over the runs.



Phase
Length (min.)

VerCArm24 VerCT13

Patient preparation 16.3 ± 9.9 37.0 ± 21.7

Sterilizing 11.4 ± 3.2 12.6± 2.4

Needle insertion 18.6 ± 13.4 28.3 ± 21.9

Cement mixing 4.2 ± 1.1 3.5 ± 1.4

Cement injection 8.5 ± 2.8 18.6 ± 14.2

Wound dressing 3.6 ± 1.3 4.8 ± 1.8

Image acquisition 2.1 ± 1.0 2.8 ± 1.6

Patient leaving 3.0 ± 0.9 5.7 ± 4.5

Complete surgery 68.8 ± 30.9 116.6± 48.4

Patient preparation

Wound dressing

Sterilizing

Needle insertion

Cement mixing Cement injection

Image acquisition

Patient leaving
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Fig. 4. (a) Phase list and statistics in VerCArm24 and VerCT13 datasets. (b) Phase
transitions generated from the datasets.

We compare the performance of our proposed features with handcrafted vi-
sual features, i.e., dense SIFT on both RGB and depth images. In addition, we
also perform comparisons with other deep features, such as features extracted
using AlexNet [5] and finetuned networks based on AlexNet. Similarly to our
proposed feature, the deep features are the output of the second last layer in the
network, e.g., for AlexNet, it is the layer fc7 (see Fig. 1). For these deep features,
we also use the combination of RGB and depth features. These are obtained by
concatenating the visual features extracted from the RGB and depth images.

3.3 Training Parameters

We use the same training parameters for all finetuning processes. Each of them
is performed for 30K iterations with a batch size of 50 images. For layers that
are already in the pre-trained network, their learning rate is set to 10−3; while
other layers which are initialized randomly have higher learning rate of 10−2.
The finetuning process is performed using the Caffe framework [13].

To carry out the phase recognition task, all features are passed to non-linear
kernel SVMs, i.e., the histogram intersection kernel. For the HHMM, we set the
number of top-level states to eight (equal to the number of phases), while the
number of bottom level states is data-driven. To model the output of the SVM,
we use a mixture of five Gaussians with diagonal covariance.



Feature
Precision (%) Recall (%) Accuracy (%)

Before Offline Online Before Offline Online Before Offline Online

DenseSIFT-RGB 72.5±5.4 87.3±14.0 82.4±13.8 77.8±5.1 87.2±13.7 84.0±13.2 74.6±6.9 86.3±16.4 81.5±15.7

DenseSIFT-Depth 62.4±6.7 72.7±13.1 69.5±11.5 63.5±9.9 72.5±13.5 69.1±10.7 66.8±19.7 80.0±11.1 73.4±17.5

AlexNet-RGB 74.4±0.8 81.5±4.2 77.9±4.5 74.5±1.1 79.6±3.9 77.5±3.8 77.3±0.9 82.9±3.1 79.6±3.2

AlexNet-Depth 60.2±0.9 77.6±3.0 73.5±1.8 56.8±1.3 77.3±2.5 74.6±1.3 59.6±1.2 78.9±2.8 75.4±2.0

AlexNet-RGBD 74.2±0.6 85.8±1.7 82.4±1.0 73.9±0.7 84.4±1.5 82.3±1.6 78.0±1.1 86.9±1.8 83.7±1.3

FTAlexNet-RGB 83.0±8.5 87.1±9.4 84.0±1.2 84.5±12.2 86.9±2.0 84.3±2.3 87.6±6.6 90.5±1.5 88.0±1.0

FTAlexNet-Depth 69.4±7.4 85.8±10.1 82.9±8.8 69.9±8.8 83.9±10.9 82.3±9.4 74.1±9.7 86.4±10.1 83.9±8.9

FTAlexNet-RGBD 82.0±0.4 88.6±0.6 84.8±0.7 82.8±0.5 87.7±0.4 84.6±0.6 86.2±0.3 91.2±0.4 88.1±0.5

Proposed Network 86.6±5.8 93.3±6.9 91.2±5.7 88.9±4.2 91.7±5.8 89.6±5.7 91.3±4.3 96.0±2.8 93.7±3.0

Table 1. Phase recognition results (mean±std) on the VerCArm24 dataset, including
results before and after applying the HHMM (offline and online recognitions). The best
result for each evaluation metric is shown in bold.

4 Experimental Results

4.1 VerCArm24 Dataset

In Table 1, we show the results of performing surgical phase recognition on the
VerCArm24 dataset. Observing the results before applying the HHMM, it can
be seen that deep features extracted from AlexNet perform similarly compared
to the dense SIFT features. This is however expected since AlexNet is trained
to extract features from completely different images, more specifically natural
images. Once the network is finetuned, the performance of the features (denoted
by FTAlexNet) is significantly improved. Interestingly, combining the RGB and
depth deep features does not always lead to improvement. This might be due
to the fact that the combination is performed through concatenation, which
might lead to dimensionality problem for SVM classification. This is why in our
proposed network, we propose to compute a shared visual feature representa-
tion instead of performing feature concatenation. As shown in Table 1, the best
recognition results before applying the HHMM are obtained using our proposed
network, yielding an accuracy of 91.3%.

Despite the high performance of the method before applying the HHMM,
there is no temporal constraint incorporated into the recognition process. Once
the temporal constraints are enforced by the HHMM, the recognition results are
further improved. In Table 1, we show these results in offline and online columns.
It can be seen that the offline recognition results are better than the online ones.
This is expected due to the nature of offline recognition, where the method can
see the complete sequence, while in online recognition, the method predicts the
phase at time t = ti using images for time t < ti. Generally, a similar trend is
observed across offline and online results: our proposed network yields the best
performance for both offline and online recognitions.



Feature
Precision (%) Recall (%) Accuracy (%)

Before Offline Online Before Offline Online Before Offline Online

AlexNet-RGB 69.2±0.9 76.9±3.0 71.6±2.6 69.2±0.9 72.5±2.9 68.9±2.4 78.2±0.7 82.9±1.4 78.9±1.4

AlexNet-Depth 54.6±0.4 65.3±2.6 64.0±2.7 54.5±1.2 64.5±1.6 63.6±1.7 58.6±0.6 75.2±2.1 73.3±1.6

AlexNet-RGBD 71.4±1.1 83.2±2.8 78.4±2.7 71.4±1.1 79.4±2.7 76.1±2.4 78.8±1.0 89.1±2.6 86.4±2.1

FTAlexNet-RGB 72.7±1.0 64.1±6.9 61.1±5.7 74.8±1.4 63.9±5.9 61.5±5.3 80.7±1.0 73.8±5.1 71.9±4.4

FTAlexNet-Depth 55.6±0.5 68.8±2.2 64.6±2.2 56.4±1.0 65.2±2.1 63.3±1.6 62.6±1.0 76.9±2.5 75.1±1.9

FTAlexNet-RGBD 69.1±0.2 71.4±5.1 66.0±4.5 68.1±0.1 67.4±4.5 64.8±4.2 78.1±0.3 80.8±4.5 78.0±3.9

Proposed Network 82.2±4.9 89.3±6.6 84.8±7.4 83.2±6.8 84.8±7.4 82.0±6.6 89.0±4.7 95.2±2.4 93.9±2.2

Table 2. Phase recognition results (mean±std) on the VerCT13 dataset, including
results before and after applying the HHMM (offline and online recognitions). The
best result for each evaluation metric is shown in bold.

4.2 VerCT13 Dataset

In order to test the generalizability of the networks, we also perform evaluations
using another dataset, i.e., the VerCT13 dataset, that has not been seen by the
networks. Here, we solely focus on the performance of deep features since it has
been shown in Section 4.1 that the handcrafted features are outperformed by
the finetuned deep features.

We show the phase recognition results in Table 2. It can be seen that the
results hold the same trend as the ones obtained from the VerCArm24 dataset
(shown in Table 1). Before applying the HHMM, our proposed network yields
the best performance, with an accuracy of 89.0%. It can also be seen that the
recognition results after applying the HHMM obtained by our proposed net-
work are the best, yielding accuracies of 95.2% and 93.9% for offline and online
recognitions, respectively. These results are very similar to the ones presented in
Table 1, where our network yields accuracies of 96% and 93.7% for offline and
online recognitions, respectively, on the VerCArm24 dataset. The fact that the
features extracted from our proposed network perform similarly on the VerCT13
and the VerCArm24 datasets demonstrates that the network does not overfit the
finetuning dataset, i.e., it generalizes to other datasets.

5 Conclusions

In this paper, we have presented a surgical phase recognition task performed
on multi-view RGBD videos which capture the OR during vertebroplasty proce-
dures. We propose a convolutional neural network (CNN) architecture leveraging
the multi-modality of the data, by taking RGB, depth and motion images as in-
put. To evaluate the performance, we have performed an extensive experiment
using two datasets. The results demonstrate the visual features extracted by
our proposed network significantly outperforms other visual features, yielding
accuracies of 96% and 95.2% for offline recognition on the two datasets.

In the future work, it would be interesting to incorporate a temporal model,
such as recurrent neural network (RNN) or long short term memory (LSTM)



units, into the network in order to establish an end-to-end deep architecture.
This is currently still a challenging problem since it is hard to train such a model
over very long sequences. Moreover, more videos might be required to properly
learn the temporal model. However, incorporating the temporal model into the
architecture would eliminate the need for HHMM, resulting in the possibility to
optimize the full pipeline in one run.
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